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Abstract
Background:Hashimoto’s thyroiditis (HT) is an internationally impor-
tant health problem.
Objectives: Role of chemical elements (ChE) in etiology and pathogen-
esis of HT is unclear. The aim of this exploratory study was to assess
whether there were significant changes in thyroid tissue levels of twenty
ChE (Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc,
Se, Sr, and Zn) are present in the HT transformed thyroid.
Methods
Twenty ChE of thyroid tissue were determined in 8 patients with
HT. The control group included thyroid tissue samples from 105
healthy individuals. Measurements were conducted using combination
of non-destructive methods such as energy dispersive X-ray fluorescent
analysis and instrumental neutron activation analysis.
Results
Conclusions
Reduced mean values of Ca and I content almost in two times, while
elevated level of Ag, Cu, Hg, and Na in 21, 1.2, 30, and 1.5 times,
respectively, were found in thyroid with HT in comparison with normal
level.
There are considerable changes in some ChE contents in tissue of
thyroid with HT. Thus, it is reasonable to assume that the levels of these
ChE in affected thyroid tissue can be used as HTmarkers. However, this
topic needs additional studies.
Keywords: Hashimoto’s thyroiditis, Intact thyroid, Chemical elements,
Energy dispersive X-ray fluorescent analysis, Neutron activation anal-
ysis.
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1 INTRODUCTION

Hashimoto’s thyroiditis (HT), also called
chronic lymphocytic or autoimmune thy-
roiditis, is part of the spectrum of chronic

autoimmune thyroid diseases (1). Hashimoto’s dis-
ease is associated with thyroid autoantibodies pro-
duction like the most common, thyroid peroxidase
and thyroglobulin antibodies, and with lymphocytic
inltration (1). Although the HT was described over
100 years ago the exact mechanism of progressive
thyroid tissue destruction as a result of HT is still
not sufficiently elucidated. Clinical differentiation
between HT, Riedel’s struma and other thyroid be-
nign and malignant nodules is often difficult (2, 3).
We hypothesized that imbalance of chemical ele-
ments (ChE) contents in thyroid tissue may play
a significant role in etiology and pathogenesis of
HT. Furthermore, specific levels of ChE contents in
autoimmune transformed thyroid tissue may be used
as HT biomarkers.
For over the 20th century, there was the governing
opinion that all thyroid nodules (TN), including HT,
are the straightforward sequel of iodine (I) defi-
ciency. Though, it was found that TN is a frequent
disease even in those countries and regions where
the inhabitants are never exposed to I shortage (4).
Moreover, it was shown that iodine excess has se-
vere effects on human health and is associated with
the development of thyroidal disfunctions and au-
toimmunity, nodular and diffuse goiter, benign and
malignant tumors of gland (5–8). It was also demon-
strated that besides the iodine deficiency and excess
many other dietary, environmental, and occupational
factors are associated with the TN incidence (9–
11). Among them, a disruption of evolutionary stable
input of many chemical elements (ChE) in the human
body after the industrial revolution plays a signifi-
cant role in the etiology of thyroidal disorders (12).
In addition to I, many other ChE is involved in es-
sential physiological functions (13). Crucial or toxic
(phologistic, goitrogenic, mutagenic, carcinogenic)
properties of ChE depend on tissue-specific need or
tolerance, respectively (13). Deficiency, overload, or
an imbalance of the ChE may result in cellular dys-
function, degeneration, death, benign or malignant
transformation (13–15).

In our earlier studies, the complex of in vivo and
in vitro nuclear analytical and related methods was
developed and used for the investigation of iodine
and other ChE contents in the normal and patho-
logical thyroid (16–22). Iodine level in the normal
thyroid was scrutinized in relation to age, gender,
and some non-thyroidal diseases (23, 24). Hereafter,
variations of ChE content with age in the thyroid
of males and females were studied, and age- and
gender-dependence of some ChEwas perceived (25–
41). In addition, a significant difference between
some ChE contents in normal and cancerous thyroid
was demonstrated (42–47).
So far, the etiology and pathogenesis of HT has to
be considered as multifactorial. The present study
was performed to clarify the role of some ChE in the
HT etiology. Having this in mind, our aim was to
assess the silver (Ag), bromine (Br), calcium (Ca),
chlorine (Cl), cobalt (Co), chromium (Cr), coper
(Cu), iron (Fe), mercury (Hg), I, potassium (K), mag-
nesium (Mg), manganese (Mn), sodium (Na), rubid-
ium (Rb), ammonium (Sb), scandium (Sc), selenium
(Se), strontium (Sr), and zinc (Zn) contents in HT
affected thyroid tissue using energy dispersive X-ray
fluorescent analysis (EDXRF) combined with non-
destructive instrumental neutron activation analysis
with high resolution spectrometry of sort-lived ra-
dionuclides (INAA-SLR) and long-lived radionu-
clides (INAA-LLR). A further aim was to compare
the levels of these twenty ChE in the HT transformed
thyroid with those in normal (intact) thyroid (NT).

2 MATERIAL AND METHODS

All patients with HT (n=8, 7 females and 1 male,
mean age MSD was 4010 years, range 34-55) were
hospitalized in the Head and Neck Department of the
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MRRC. Thick-needle puncture biopsy of suspicious
lesion of the gland was performed for every per-
sons, to allowmorphological examination of affected
thyroid tissue and to determine their TE contents.
For all patients the diagnosis has been confirmed by
clinical and morphological results obtained during
studies of biopsy and resectedmaterials. Histological
conclusion for all thyroidal lesions was the HT.
Normal thyroid samples were removed at necropsy
from 105 deceased (mean age 4421 years, range 2-
87), who had died suddenly. The majority of deaths
were due to trauma. Histological examination was
used in the NT group to match the age criteria, as
well as to confirm the absence of micro-nodules and
underlying cancer.
All studies were approved by the Ethical Commit-
tees of the Medical Radiological Research Centre
(MRRC), Obninsk. All the procedures performed in
studies involving human participants were in accor-
dance with the ethical standards of the institutional
and/or national research committee and with the
1964 Helsinki declaration and its later amendments,
or with comparable ethical standards.
All thyroid samples were divided into two parts using
a titanium scalpel (48). One was used for morpholog-
ical study while the other was for TE evaluation. All
samples for TE analysis were weighed, freeze-dried
and homogenized (49).
The content of Br, Cu, Fe, Rb, Sr, and Zn were
determined by EDXRF. Details of the relevant facil-
ity for this method, source with 109Cd radionuclide,
methods of analysis and the results of quality control
were presented in our earlier publications concerning
the EDXRF of ChE contents in human thyroid and
prostate tissue (25, 26, 50).
The content of Br, Ca, Cl, I, K, Mg, Mn, and Na
were determined by INAA-SLR using a horizontal
channel equipped with the pneumatic rabbit system
of the WWR-c research nuclear reactor (Branch of
Karpov Institute, Obninsk). Details of used neu-
tron flux, nuclear reactions, radionuclides, gamma-
energies, spectrometric unit, sample preparation and
measurement were presented in our earlier publica-
tions concerning the INAA-SLR of ChE contents in
human thyroid, scalp hair, and prostate (27, 28, 51–
53)

In a few days after non-destructive INAA-SLR all
thyroid samples were repacked and used for INAA-
LLR. A vertical channel of the WWR-c research
nuclear reactor (Branch of Karpov Institute, Ob-
ninsk).was applied to determine the content of Ag,
Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn by INAA-
LLR. Details of used neutron flux, nuclear reactions,
radionuclides, gamma-energies, spectrometric unit,
sample preparation andmeasurement were presented
in our earlier publications concerning the INAA-
LLR of ChE contents in human thyroid, scalp hair,
and prostate (29, 30, 51, 54)
To determine contents of the ChE by comparison
with a known standard, biological synthetic stan-
dards (BSS) prepared from phenol-formaldehyde
resins were used (55).In addition to BSS, aliquots
of commercial, chemically pure compounds were
also used as standards. For each method ten certified
reference material IAEA H-4 (animal muscle) and
IAEA HH-1 (human hair) sub-samples were treated
and analyzed in the same conditions that thyroid
samples to estimate the precision and accuracy of
results.
A dedicated computer program for INAA mode op-
timization was used (56). All thyroid samples were
prepared in duplicate, and mean values of ChE con-
tents were used. Mean values of ChE contents were
used in final calculation for the Br, Fe, Rb, and
Zn mass fractions measured by two methods. Using
Microsoft Office Excel, a summary of the statistics,
including, arithmetic mean, standard deviation, stan-
dard error of mean, minimum and maximum val-
ues, median, percentiles with 0.025 and 0.975 levels
was calculated for ChE contents. The difference in
the results between two groups (NT and HT) was
evaluated by the parametric Student’s t-test and non-
parametric Wilcoxon-Mann-Whitney U-test.

3 RESULTS

resents certain statistical parameters of theAg, Br,
Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb,
Sb, Sc, Se, Sr, and Znmass fraction in normal thyroid
and thyroid with Hashimoto’s thyroiditis.
Comparison of values obtained for Ag, Br, Ca, Cl,
Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc,
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Se, Sr, and Zn contents in the NT and HT group
of samples with median of means reported by other
researches (57–81) depicts in Table 2. A number of
values for ChE mass fractions in literature were not
expressed on a dry mass basis. However, we cal-
culated these values using published data for water
(75%) (82) and ash (4.16% on dry mass basis) (83)
contents in thyroid of adults.
The ratios of means and the distinction between
mean values of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg,
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass
fractions in the NT and HT group of samples are
presented in Table 3.

4 DISCUSSION

Previously found good agreement of the Br, Ca, Cl, I,
K,Mg,Mn, and Na contents analyzed by INAA-SLR
with the certified data of CRM IAEA H-4 (18, 25–
30, 50–54) indicates an acceptable accuracy of the
results obtained in the study of ChE of the thyroid
samples presented in Tables 1-3.
The mean values and all selected statistical parame-
ters were calculated for all twenty ChE (Ag, Br, Ca,
Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc,
Se, Sr, and Zn) mass fractions in NT and HT groups
of tissue samples (Table 1).
In a general sense values obtained for Br, Ca, Cl, Cr,
Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, and Zn
contents in the normal human thyroid (Table 2) agree
well with median of mean values reported by other
researches (57–75).
Table 1. Some statistical parameters of Ag, Br, Ca, Cl, 
Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, 
and Zn mass fraction (mg/kg, dry mass basis) in normal 
thyroid and thyroid with Hashimoto’s thy-roiditis

Table 2 . Median, minimum and maximum value of 
means of twenty chemical element contents in nor-
mal thyroid and thyroid with Hashimoto’s 
thyroiditis according to data from the literature in 
comparison with our results (mg/kg, dry mass basis)
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M – arithmetic mean, SD – standard deviation, SEM
– standard error of mean, Min – minimum value,
Max – maximum value, P 0.025 – percentile with
0.025 level, P 0.975 – percentile with 0.975 level.
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while our value for Ag, Cu, I, Mn, and Zn are some
higher than the upper limit of means from literature.
Information on Br, Ca, Cl, Co, Cr, Fe, Hg, K, Mg,
Na, Rb, Sb, and Sc contents in thyroid with HT was
not found.
Table 3. Differences between mean values
(M±SEM) of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg,
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass
fraction (mg/kg, dry mass basis) in normal thyroid
and thyroid with Hashimoto’s thyroiditis

in cited studies. However, in our opinion, the main
reason for the inter-observer discrepancy can be at-
tributed to the accuracy of the analytical techniques,
sample preparation methods, and the inability to take
standardized samples from affected tissues. It was
insufficient quality control of results in these studies.
In many scientific reports, tissue samples were ashed
or dried at high temperature for many hours. In other
cases, thyroid samples were treated with solvents
(distilled water, ethanol, formalin etc). There is ev-
idence that during ashing, drying and digestion at
high temperature some quantities of certain ChE are
lost as a result of this treatment. That concerns not
only such volatile halogen as Br, but also other ChE
investigated in the study (84, 85).

From Table 3, it is observed that in HT samples the
mass fraction of Ca and I are approximately two
times lower, while Ag, Cu, Hg, and Na contents are
21, 1.2, 30, and 1.5 times, respectively, higher than
in NT. Thus, if we accept the ChE contents in the NT
group as a norm, we have to conclude that under HT
transformation the Ag, Ca, Cu, Hg, I, and Na levels
in thyroid tissue notably changed.

Characteristically, elevated or reduced levels of ChE
observed in affected tissues are discussed in terms of
their potential role in the initiation and promotion of
TN. In other words, using the low or high levels of
the ChE in TN researchers try to determine the role
of the deficiency or excess of each ChE in the TN
etiology. In our opinion, abnormal levels of many
ChE in TN, including HT, could be and cause, and

JMRHS 2 (10), 1500−1510 (2021) MEERP LTD 1504

M –arithmetic mean, SD – standard deviation, (n)* –
number of all references, (n)** – number of samples.
The obtained means for Ag and Co were almost
one order of magnitude lower whereas mean for Sr
was 7.46 times higher than median of previously
reported means for NT, but, nevertheless, inside the
range of means (Table 2). Data cited in Table 2
for NT also includes samples obtained from patients
who died from different non-endocrine diseases. In
our previous study it was shown that some non-
endocrine diseases can effect on ChE contents in thy-
roid (24). Moreover, in many studies the “normal”
thyroid means a visually non-affected tissue adjacent
to benign or malignant thyroidal nodules. However,
there are no data on a comparison between the ChE
contents in such kind of samples and those in thyroid
of healthy persons, which permits to confirm their
identity.
The data on ChE levels in thyroid with HT are
very limited (Table 2). Results for Se obtained in
the present study agree well with published data,

M – arithmetic mean, SEM – standard error of mean,
Statistically significant values are in bold
The range of means of Ag, Br, Ca, Cl, Co, Cr, Fe, Hg,
I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn level
reported in the literature for NT tissue vary widely
(Table 2). This can be explained by a dependence of
ChE content on many factors, including “normality”
of thyroid samples (see above), the region of the
thyroid, from which the sample was taken, age, gen-
der, ethnicity, mass of the gland, and its functional
activity. Not all these factors were strictly controlled
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also effect of thyroid tissue transformation. From the
results of such kind studies, it is not always possible
to decide whether the measured decrease or increase
in ChE level in pathologically altered tissue is the
reason for alterations or vice versa. Nevertheless
the differences between ChE levels in normal and
affected thyroid tissue could be used as HT markers.
This study has some limitations. Firstly, analytical
techniques used in this study measure merely twenty
ChE (Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K,
Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn) mass frac-
tions. Future studies should be aimed toward using
other analytical methods such as inductively coupled
plasma atomic emission spectrometry (ICP-AES)
and inductively coupled plasma mass spectrometry
(ICP-MS), which will elongate the list of ChE in-
vestigated in NT and HT. Secondly, the sample size
of HT group was relatively small and prevented
investigations of ChE contents in HT group using
differentials like gender, thyroid functional activity,
stage of disease, dietary habits of healthy persons
and patients with HT. Lastly, the generalization of
our outcomes may be bounded to the Russian popu-
lation. Despite these limitations, this study provides
evidence on specific tissue Ag, Ca, Cu, Hg, I, and Na
level alteration and shows the necessity to continue
ChE research of HT.

5 CONCLUSION

In this work, ChE measurements were carried out
in the tissue samples of normal thyroid and HT
using three non-destructive instrumental analytical
methods: EDXRF, INAA-SLR, and INAA-LLR. It
was shown that the combination of these methods is
an adequate analytical tool for the non-destructive
determination of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe,
Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and
Zn content in the tissue samples of human thyroid,
including needle-biopsy samples. It was observed
that in thyroidwithHT content of Ag, Cu, Hg, andNa
significantly increased whereas the levels of Ca and
I decreased in a comparison with the normal thyroid
tissues. In our opinion, the increase in levels of Ag,
Cu, Hg, and Na, as well as the decrease in levels
of Ca and I in HT transformed thyroid tissue might

demonstrate an involvement of these ChE in etiology
and pathogenesis of HT. It was supposed that the
changes in levels Ag, Ca, Cu, Hg, I, andNa in thyroid
tissue can be used as HT markers.
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